If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6^2x-1=1/216
We move all terms to the left:
6^2x-1-(1/216)=0
We add all the numbers together, and all the variables
6^2x-1-(+1/216)=0
We get rid of parentheses
6^2x-1-1/216=0
We multiply all the terms by the denominator
6^2x*216-1-1*216=0
We add all the numbers together, and all the variables
6^2x*216-217=0
Wy multiply elements
1296x^2-217=0
a = 1296; b = 0; c = -217;
Δ = b2-4ac
Δ = 02-4·1296·(-217)
Δ = 1124928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1124928}=\sqrt{5184*217}=\sqrt{5184}*\sqrt{217}=72\sqrt{217}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72\sqrt{217}}{2*1296}=\frac{0-72\sqrt{217}}{2592} =-\frac{72\sqrt{217}}{2592} =-\frac{\sqrt{217}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72\sqrt{217}}{2*1296}=\frac{0+72\sqrt{217}}{2592} =\frac{72\sqrt{217}}{2592} =\frac{\sqrt{217}}{36} $
| (2x+15)+(3x-16)+(x)=180 | | 4(t+4)=18 | | 10h=170 | | 3^2x-4-1=0 | | 300*x=10000 | | 4+5(x-2)=34 | | 2^y-1=64 | | 7x+18=3x+24 | | 602=-t | | 64=n+15 | | -3c=975 | | 6s+2=4s-2 | | f(X)=X³-2X²+2X-6 | | 3(x-3)=4(2x+@ | | 365x+125=250x*125 | | 10=r/3 | | 6d+4+62=180 | | 4x+5=84 | | 9a+6=75 | | 5x-(5x-3)=21 | | 4(2x-)=3(x+7) | | 5x+x=27 | | 3x/2+1=6 | | 30-5n=-27 | | 2x+2=3x^2-3 | | -3=3x−4 | | 30=0.8x+3 | | 20=0.8x+3 | | 0=0.8x+3 | | 10=0.8x+3 | | 7x18=14x | | -19=18-k/16 |